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Abstract

The determination of the Argonne National Laboratory-Osaka University (ANL-Osaka)
Partial-Wave Amplitudes (PWA) of πN and γN Reactions is reviewed. The predicted PWA
are presented on a web page (https://www.phy.anl.gov/theory/research/anl-osaka-
pwa). The formula are given for using the predicted PWA to calculate the cross sections
of (1)meson-baryon (MB) scattering MB → M ′B′ with MB,M ′B′ = πN, ηN,KΛ, KΣ,
(2) two-pion production πN → π∆, ρN, σN → ππN , (3) Meson photoproduction γN →
πN, ηN,KΛ, KΣ, (4) Pion electroproduction N(e, e′π)N , (5) inclusive N(e, e′)X . We also
present sample results from our fits to the data.

I. INTRODUCTION

The Argonne National Laboratory-Osaka University (ANL-Osaka) collaboration started
in 1996 with a publication [1] of a meson-exchange model for investigating the excitation of
the ∆ (1232) resonance in πN and γN reactions. The predictions [1, 2] from this model,
called the Sato-Lee (SL) model in the community, were found to be consistent with the data
from MIT-Bates, Mainz, Bonn, and JLab. The results from the SL model strongly suggested
that a dynamical model based on a Hamiltonian with bare N∗ states and meson-exchange
mechanisms can be used to

1. describe the data of πN and γN reactions up to invariant mass W = 2 GeV,

2. extract the masses and widths of nucleon resonances (N∗) from the predicted Partial-
Wave Amplitudes (PWA) for investigating the structure of the nucleon and its excited
states,

3. apply the constructed Hamiltonian with meson and N∗ degrees of freedom to predict
the cross sections of the production of mesons (π, 2π, η,K) from nuclei, which are
needed for analyzing the data of nuclear reactions induced by hadrons, electrons, and
neutrinos in the nucleon resonance region.

The formulation of the SL model was then extended to include the higher mass bare
N∗ states and the meson-baryon channels which have significant contributions to the πN
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and γN total cross sections below invariant mass W = 2 GeV. Exploratory calculations
using this Dynamical Coupled-Channel (DCC) model were carried out by the ANL-Osaka
collaboration during 2004-2006. The analysis of the world data of πN and γN reactions
up to W = 2 GeV was then carried out at the Excited Baryon Analysis Center (EBAC)
at JLab during 2006-2012, with 12 publications [3-15]. The ANL-Osaka collaboration
continued the analysis to extract [16, 17] 22 nucleon resonances during 2013-2016. The
calculations for the analysis involved solving coupled-channel scattering equations with 8
channels: γN, πN, ηN,KΛ, KΣ, and ππN which has π∆, σN, ρN resonant components.
The parameters of the model were determined by performing χ2-fits to the world data of
γN, πN → πN, ηN,KΛ, KΣ (about 30,000 data points). The ANL-Osaka model was also
extended[18] to investigate the neutrino-induced meson production reactions on the nucleon.
The computation resources from DOE’s NERSC (about 500,000 hours/year) and Argonne’s
LCRC (about 300,000 hours/year) had been used to complete this task.

The results presented on https://www.phy.anl.gov/theory/research/anl-osaka-
pwa are for the nuclear and hadron physics communities to get access to the predicted
partial-wave amplitudes of γN, πN → πN, ηN,KΛ, KΣ, π∆, σN, ρN . In section II, we de-
scribe briefly the ANL-Osaka DCC model and the resulting formulation of πN and γN
reactions. The procedures for extracting nucleon resonances are given in section III. In
section IV, we present formula for using the PWA posted on the web page to calculate the
cross sections of the considered meson-baryon reactions . The data included in the fits are
summarized in section V. In section VI and Appendix, we present sample results from our
fits to the data.

II. ANL-OSAKA DCC MODEL

The ANL-Osaka DCC Model is based on an effective Hamiltonian of the following
energy − independent form:

H = H0 + v22 + ΓV + hππN , (1)

where H0 =
∑

α

√

m2
α + ~p 2

α with mα and ~pα denoting the mass and momentum of particle

α, respectively. The interactions are defined as

v22 =
∑

MB,M ′B′

vMB,M ′B′ + vππ,ππ , (2)

ΓV = {
∑

N∗

(
∑

MB

ΓN∗→MB) +
∑

M∗

hM∗→ππ}+ {c.c} , (3)

hππN = {vπN,ππN + vγN,ππN}+ {c.c} , (4)

where vMB,M ′B′ is the meson-baryon (MB) interactions, vππ,ππ is the ππ interactions,
ΓN∗→MB describes the decay of a bare excited nucleon (N∗) into a MB state, hM∗→ππ

describes the decay of a bare meson (M∗) into a ππ state, and {c.c.} denotes the complex
conjugate of the terms on its left-side. For describing the πN and γN reactions up to in-
variant mass W = 2 GeV, we include MB = γN, πN, ηN,KΛ, KΣ, π∆, ρN, σN , about 20
bare N∗ states, and M∗ = ρ, σ.
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A. Hadronic amplitudes

Starting with the Hamiltonian defined by Eqs. (1)-(4), we apply [4] the projection operator
method to cast the partial-wave amplitudes of the scattering T matrix of the meson-baryon

reaction, M(~k) +B(−~k) →M ′(~k′) +B′(−~k′), into the following form

TM ′B′,MB(k
′, k;E) = tM ′B′,MB(k

′, k;E) + tRM ′B′,MB(k
′, k;E), (5)

where E is the total energy, k and k′ are the meson-baryon relative momenta in the center
of mass frame, and MB,M ′B′ = πN, ηN, π∆, ρN, σN,KΛ, KΣ are the reaction channels
included in the analysis. The notation MB also represents the partial-wave quantum num-
bers: [L(sMsB)S]JT ], where J is the total angular momentum, T the total isospin, L the
orbital angular momentum, S the total spin which is from the coupling of the meson spin
sM and the baryon spin sB.

The direct reaction amplitude tM ′B′,MB(k
′, k;E) in Eq. (5) is defined by a set of coupled-

channel equations

tM ′B′,MB(k
′, k;E) = VM ′B′,MB(k

′, k;E)

+
∑

M ′′B′′

∫

CM′′B′′

k′′2dk′′VM ′B′,M ′′B′′(k′, k′′;E)

×GM ′′B′′(k′′;E)tM ′′B′′,MB(k
′′, k;E). (6)

Here CM ′′B′′ is the integration path, which is taken from 0 to ∞ for the physical E; the
summation

∑

MB runs over the orbital angular momentum and total spin indices for all
MB channels allowed in a given partial wave; GM ′′B′′(k;E) are the meson-baryon Green
functions. Defining Eα(k) = [m2

α + k2]1/2 with mα being the mass of a particle α, the
meson-baryon Green functions in the above equations are:

GMB(k;E) =
1

E −EM (k)−EB(k) + iǫ
, (7)

for the stable πN , ηN , KΛ, and KΣ channels, and

GMB(k;E) =
1

E − EM(k)− EB(k)− ΣMB(k;E)
, (8)

for the unstable π∆, ρN , and σN channels. The self energy ΣMB(k;E) in Eq. (8) is cal-
culated from a vertex function defining the decay of the considered unstable particle in
the presence of a spectator π or N with momentum k. For the π∆ and ρN channels, the
self-energies are explicitly given by

Σπ∆(k;E) =
m∆

E∆(k)

∫

q2dq
MπN (q)

[M2
πN(q) + k2]1/2

|f∆→πN(q)|2
E − Eπ(k)− [M2

πN (q) + k2]1/2 + iǫ
, (9)

ΣρN (k;E) =
mρ

Eρ(k)

∫

q2dq
Mππ(q)

[M2
ππ(q) + k2]1/2

|fρ→ππ(q)|2
E −EN (k)− [M2

ππ(q) + k2]1/2 + iǫ
, (10)

where m∆ = 1280 MeV, mρ = 812 MeV, MπN(q) = Eπ(q) + EN (q), and Mππ(q) = Eπ(q) +
Eπ(q). The form factors f∆→πN(q) and fρ→ππ(q) are for describing the ∆ → πN and ρ→ ππ

3



decays in the ∆ and ρ rest frames, respectively. They are parametrized as:

f∆→πN(q) = −i (0.98)

[2(mN +mπ)]1/2

(

q

mπ

)

(

1

1 + [q/(358 MeV)]2

)2

, (11)

fρ→ππ(q) =
(0.6684)√

mπ

(

q

(461 MeV)

)(

1

1 + [q/(461 MeV)]2

)2

. (12)

The σ self-energy ΣσN (k;E) is calculated from a ππ s-wave scattering model with a vertex
function g(q) for the σ → ππ decay and a separable interaction v(q′, q) = h0h(q

′)h(q). The
resulting form is

ΣσN (k;E) = 〈gGππg〉(k;E) + τ(k;E)[〈gGππh〉(k;E)]2, (13)

with

τ(k;E) =
h0

1− h0〈hGππh〉(k;E)
, (14)

〈hGππh〉(k;E) =
∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× h(q)2

E − EN(k)− [M2
ππ(q) + k2]1/2 + iε

, (15)

〈gGππg〉(k;E) =
mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× g(q)2

E − EN(k)− [M2
ππ(q) + k2]1/2 + iε

, (16)

〈gGππh〉(k;E) =

√

mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× g(q)h(q)

E − EN(k)− [M2
ππ(q) + k2]1/2 + iε

. (17)

In the above equations, mσ = 700.0 MeV and the form factors are

g(p) =
g0√
mπ

1

1 + (cp)2
, (18)

h(p) =
1

mπ

1

1 + (dp)2
. (19)

where g0 = 1.638, h0 = 0.556, c = 1.02 fm, and d = 0.514 fm.
The driving terms of Eq. (6) are

VM ′B′,MB(k
′, k;E) = vM ′B′,MB(k

′, k) + Z
(E)
M ′B′,MB(k

′, k;E) , (20)

where vM ′B′,MB(k
′, k) are the meson-exchange potentials derived from the tree-diagrams,

as illustrated in Fig. 1, of phenomenological Lagrangians. Within the unitary transforma-
tion method used in the derivation, those potentials are energy independent and free of
singularities. The Lagrangians used in our derivations and the partial-wave expansions of
vM ′B′,MB(k

′, k) are given in Appendices B and C of Ref. [16].
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The energy-dependent Z
(E)
M ′B′,MB(k

′, k;E) terms in Eq. (20), as illustrated in Fig. 2, con-
tain the moving singularities due to the ππN cuts. The procedures for evaluating the

partial-wave matrix elements of Z
(E)
M ′B′,MB(k

′, k;E) are explained in detail in the Appendix
E of Ref. [4].

The second term in the right-hand-side of Eq. (5) is the N∗-excitation amplitude defined
by

tRM ′B′,MB(k
′, k;E) =

∑

N∗

n,N
∗

m

Γ̄M ′B′,N∗

n
(k′;E)[D(E)]n,mΓ̄N∗

m,MB(k;E). (21)

Here the dressed N∗ → MB and MB → N∗ decay vertices are, respectively, defined by

Γ̄MB,N∗(k;E) = ΓMB,N∗(k) +
∑

M ′B′

∫

q2dqtMB,M ′B′(k, q;E)GM ′B′(q, E)ΓM ′B′,N∗(q), (22)

Γ̄N∗,MB(k;E) = Γ†
MB,N∗(k) +

∑

M ′B′

∫

q2dqΓ†
M ′B′,N∗(q)GM ′B′(q, E)tM ′B′,MB(q, k;E), (23)

with ΓMB,N∗(k) being the bare N∗ →MB decay vertex [note that ΓN∗,MB(k) = Γ†
MB,N∗(k)];

the inverse of the dressed N∗ propagator is defined by

[D−1(E)]n,m = (E −M0
N∗

n
)δn,m − [ΣN∗(E)]n,m, (24)

where M0
N∗ is the mass of the bare N∗ and the N∗ self-energies ΣN∗(E) are given by

[ΣN∗(E)]n,m =
∑

MB

∫

CMB

k2dkΓN∗

n,MB(k)GMB(k;E)Γ̄MB,N∗

m
(k;E). (25)

It is emphasized that the N∗ propagator D(E) can have off-diagonal terms. The bare vertex
functions in Eqs. (22)-(23) are parametrized as

ΓMB(LS),N∗(k) =
1

(2π)3/2
1√
mN

CMB(LS),N∗





Λ2
MB(LS),N∗

Λ2
MB(LS),N∗ + k2





(2+L/2) (
k

mπ

)L

, (26)

where L and S denote the orbital angular momentum and spin of theMB state, respectively.
This vertex function behaves as kL at k ∼ 0 and k−4 for k → ∞. The coupling constants
CMB(LS),N∗ , the cutoffs ΛMB(LS),N∗ and the bare masses M0

N∗ are the parameters of the
model.

Equations (5)-(25) define the DCC model used in the ANL-Osaka analysis. They are
illustrated in Fig. 3. In the absence of theoretical inputs, the DCC model, as well as all

B’B

M M’

B

M

n

n

v v v vs u t c

FIG. 1: Meson-exchange mechanisms.
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π

∆

ρ,σ∆

π
Z

(E)

MB,M’B’
= +

FIG. 2: Z-diagram mechanisms.

T

= +

= +

=

MB,M’B’
t MB,M’B’ t MB,M’B’

R

t MB,M’B’

+

= +

vMB,M’B’

Γ Γ
_

FIG. 3: Graphical representation of Eqs. (5)-(25).

hadron reaction models, has parameters that can only be determined phenomenologically
from fitting the data. The meson-exchange interactions vM ′B′,MB depend on the coupling
constants and the cutoffs of form factors that regularize their matrix elements. While the
values of some of the coupling constants can be estimated from SU(3) and the previous
analysis, we allow most of them to vary in the fits.

B. Electromagnetic amplitudes

With the hadronic amplitudes tM ′B′,MB(k
′, k;E) defined in Eq. (6), the partial wave

amplitudes for the γ(~q) +N(−~q) → M ′(~k′) +B′(−~k) reactions are expressed as [4],

TM ′B′,γN(k
′, q;E) = tM ′B′,γN(k

′, q;E) + tRM ′B′,γN(k
′, q;E), (27)

with

tM ′B′,γN(k
′, q;E) = vM ′B′,γN(k

′, q)

+
∑

M ′′B′′

∫

p2dptM ′B′,M ′′B′′(k′, p;E)GM ′′B′′(p;E)vM ′′B′′,γN(p, q), (28)
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tRM ′B′,γN(k
′, q;E) =

∑

n,m

Γ̄M ′B′,N∗

n
(k′;E)[D(E)]n,mΓ̄N∗

m,γN(q;E), (29)

where the dressed N∗ → γN vertex is

Γ̄N∗,γN (q;E) = ΓN∗,γN(q) +
∑

M ′B′

∫

p2dpΓ†
M ′B′,N∗(p)GM ′B′(p, E)tM ′B′,γN(p, q;E). (30)

By using Eq.(28), the above equation can be written in terms of dressed N∗ →MB vertex
Γ̄N∗,M ′B′(p, E) defined by Eq.(23)

Γ̄N∗,γN(q;E) = ΓN∗,γN(q) +
∑

M ′B′

∫

p2dpΓ̄N∗,M ′B′(p, E)GM ′B′(p, E)vM ′B′,γN (p, q;E).(31)

Here the transition interaction vMB,γN has the tree-diagram mechanisms shown in Fig.1.
Thus the pion-loop contributions (M ′B′ = πN) to the dressed vertex Γ̄N∗,γN(q;E) defined
by Eq.(31) can be illustrated in Fig. 4. The procedures for calculating vMB,γN are detailed
in Ref. [16].

For the bare γN → N∗ vertex, we write in the helicity representation as

ΓN∗,γN(q) =
1

(2π)3/2

√

mN

EN(q)

√

qR
q0
GN∗

λ (Q2, q0)δλ,(λγ−λN ), (32)

where qR and q0 are defined by MN∗ = qR+EN (qR) and W = q0+EN (q0), respectively, and

GN∗

λ (Q2, q0) = AN∗

λ (Q2, q0), for transverse photons, (33)

= SN∗

λ (Q2, q0), for longitudinal photons. (34)

The helicity amplitudes AN∗

λ and SN∗

λ in the above equations are related to the multipole
amplitudes EN∗

l± ,M
N∗

l± , SN∗

l± of γN → N∗ processes. For the N∗ of spin J = l + 1/2 with l
being the orbital angular momentum of the γN system, the helicity amplitudes are

AN∗

3/2(Q
2, q0) =

√

l(l + 2)

2
[−MN∗

l+ (Q2, q0) + EN∗

l+ (Q2, q0)], (35)

AN∗

1/2(Q
2, q0) = −1

2
[lMN∗

l+ (Q2, q0) + (l + 2)EN∗

l+ (Q2, q0)], (36)

SN∗

1/2(Q
2, q0) = SN∗

l+ (Q2, q0), (37)

For N∗ with J = l − 1/2, we have

AN∗

3/2(Q
2, q0) = −

√

(l − 1)(l + 1)

2
[MN∗

l− (Q2, q0) + EN∗

l− (Q2, q0)], (38)

AN∗

1/2(Q
2, q0) =

1

2
[(l + 1)MN∗

l− (Q2, q0)− (l − 1)EN∗

l− (Q2, q0)], (39)

SN∗

1/2(Q
2, q0) = SN∗

l− (Q2, q0). (40)

The multipole amplitudes are parametrized as

MN∗

l± (Q2, q0) =
(

q0
mπ

)l
(

Λ2
N∗,γN +m2

π

Λ2
N∗,γN + q20

)(2+l/2)

M̃N∗

l± (Q2), (41)

EN∗

l± (k)(Q2, q0) =
(

q0
mπ

)(l±1)
(

Λ2
N∗,γN +m2

π

Λ2
N∗,γN + q20

)[2+(l±1)/2]

ẼN∗

l± (Q2), (42)

SN∗

l± (k)(Q2, q0) =
(

q0
mπ

)(l±1)
(

Λ2
N∗,γN +m2

π

Λ2
N∗,γN + q20

)[2+(l±1)/2]

S̃N∗

l± (Q2), (43)
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N N∗

π

π, ρ
ω

π

π

N, ∆

γ

FIG. 4: Dressed γN → N∗ vertex defined by Eq. (32).

where the cutoff ΛN∗,γN and the coupling constants M̃l±(Q
2), Ẽl±(Q

2), S̃l±(Q
2) are deter-

mined in fitting the data. One significant difference between the above parametrization and
the form used in our previous analysis [6] is that the multipole amplitudes, or equivalently
the helicity amplitudes, for the γN → N∗ processes now have the dependence on the γN
relative momentum q0.

III. EXTRACTIONS OF NUCLEON RESONANCES

We follow the earlier works to define that a nucleon resonance with a complex massMR is
an “eigenstate“ of a Hamiltonian: H |ψR

N∗〉 = MR |ψR
N∗〉. Then from the spectral expansion

of the Low Equation for reaction amplitude T (E) = H ′ +H ′(E − H)−1H ′, where we have
defined H ′ = H −H0 with H0 being the non-interacting free Hamiltonian, we have

TMB,M ′B′(k0MB, k
0
M ′B′ ;E →MR) =

〈k0MB|H ′ |ψR
N∗〉 〈ψR

N∗|H ′ |k0M ′B′〉
E −MR

+ ··, (44)

where k0MB and k0M ′B′ are the on-shell momenta defined by

E = EM (k0MB) + EB(k
0
MB)

= EM ′(k0M ′B′) + EB′(k0M ′B′) . (45)

Therefore the resonance positions can also be defined as the poles MR of the meson-baryon
amplitude TMB,M ′B′(k0MB, k

0
M ′B′ ;E) on the complex Riemann E-surface. Because of the

quadratic relation between the energy and momentum variables, each MB channel for a
given E can have a physical (p) sheet characterized by Im(k0MB) > 0 and an unphysical
(u) sheet by Im(k0MB) < 0. Like all previous works, we only look for poles close to the
physical region and have large effects on πN scattering observables. All of these poles are
on the unphysical sheet of the πN channel, but could be on either (u) or (p) sheets of other
channels. To find the resonance poles, we analytically continue Eqs. (5)-(25) and Eqs. (28)-
(30) to complex E-plane by using the method detailed in Refs. [8, 14]. The main step is to
choose appropriate integration paths CMB of Eq. (6) in solving Eqs. (5)-(25).
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Explicitly, as energy approaches a resonance position MR in the complex E-plane, the
total meson-baryon amplitudes can be written as

TMB,M ′B′(kRMB, k
R
M ′B′ ;E →MR) →

R̃MB,M ′B′(MR)

E −MR
, (46)

with

R̃MB,M ′B′(MR) = Γ̄R
M ′B′(kRM ′B′ ,MR)Γ̄

R
MB(k

R
MB,MR) (47)

where the on-shell momenta kRMB, k
R
M ′B′ are defined by Eqs. (45) with E =MR. In the actual

calculation, the residues R̃MB,M ′B′(MR) are extracted numerically by using the well known
method based on the Cauchy theorem. It is instructive to mention here that for the partial-
wave with only one bare N∗ state and the resonance can be extracted from tRM ′B′,MB(k

′, k;E)
of the full amplitude Eq.(5), each factor of the residue defined by Eq.(47) can be related to
the dressed vertex functions Eqs.(22)-(23) and the self energy Eq.(25):

Γ̄R
M ′B′(kRM ′B′ ,MR) =

Γ̄M ′B′,N∗(kRM ′B′ ,MR)
√

1− Σ′(MR)
(48)

Γ̄R
MB(k

R
MB,MR) =

Γ̄N∗,MB(k
R
MB,MR)

√

1− Σ′(MR)
(49)

where Σ′(MR) = [dΣ(E)/dE]E=MR
.

For the elastic πN → πN case, it is customary to define

RπN,πN(MR) = ρπN (k
0
πN)R̃πN,πN(MR)

= ρπN (k
0
πN)Γ̄

R
πN(k

R
πN ,MR)Γ̄

R
πN(k

R
πN ,MR) . (50)

where k0πN is defined by MR = Eπ(k
0
πN) + EN (k

0
πN) and

ρπN (k
0
πN) = π

k0πNEπ(k
0
πN)EN (k

0
πN)

E
. (51)

The helicity amplitudes of γN → N∗ at the resonance pole MR are defined as

A3/2 = C × Γ̄R
γN (q0,MR, λγ = 1, λN = −1/2), (52)

A1/2 = C × Γ̄R
γN (q0,MR, λγ = −1, λN = −1/2) , (53)

where λN and λγ are the helicities of the initial nucleon and photon, respectively, and

C =

√

EN (~q)

mN

1√
2K

√

(2JR + 1)(2π)3(2q0)

4π
, (54)

where JR is the spin of the resonance state, q0 = |~q| andK = (M2
R−m2

N)/(2MR). In practice,
we can use the extracted residues R̃πN,γN(λ) and R̃πN,πN to calculate the determined helicity
amplitudes by

A3/2 = N × RπNγN(3/2), (55)

A1/2 = N × RπNγN(1/2), (56)

N = a×
√

√

√

√

konπN
K

2π(2JR + 1)MR

mNRπN,πN

, (57)

with a =
√

2/3 for the resonance with isospin I=3/2, and a = −
√
3 for I=1/2 resonance;

the phase is fixed so that −π/2 ≤ arg(N/a) ≤ π/2.
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IV. CALCULATION OF CROSS SECTIONS

A. Meson-baryon scattering

We follow the convention of Goldberger and Watson to define the meson-baryon scattering

amplitudes. The normalization of states are : < ~k|~k ′

>= δ(~k − ~k
′

) for plane wave states,
and < φα|φβ >= δα,β for bound states. The T -matrix elements are related to S-matrix
elements by

SMB,M ′B′ = δMB,M ′B′ − 2π i δ(EMB − EM ′B′) TMB,M ′B′ (58)

Note that the ”− ” sign in the right side of the above equation is opposite to the ”+ ” sign
used by the other partial-wave analysis groups such as SAID.

The formula for calculating the meson-baryon scattering cross sections given in this sec-

tion are in the center of mass system. For the process M(~k) +B(−~k) → M ′(~k
′

) +B′(−~k ′

)
the differential cross section can be written as

dσMB→M ′B′

dΩk′
=

(4π)2

k2
ρM ′B′(k′)ρMB(k)

1

(2jM + 1)(2jB + 1)

∑

mjM
mjB

∑

m′

jM
m′

jB

| < M ′B′|t(W )|MB > |2 ,

(59)

where the incoming and outgoing momentum k and k′ are defined by the invariant mass W

W = EM(k) + EB(k) = EM ′(k′) + EB′(k′) , (60)

where Eα(k) =
√

m2
α + ~k 2 with mα being the mass of particle α, and the phase-space factor

is

ρMB(k) = π
kEM(k)EB(k)

W
. (61)

The scattering amplitude < M ′B′|t(W )|MB > in Eq. (59) can be calculated from the
partial-wave amplitudes tJTL′S′M ′B′,LSMB(k

′, k,W ) as

< M ′B′|t(W )|MB >

=
∑

JMJ ,T

∑

L′M ′

L
,S′M ′

S

∑

LML,SMS

tJTL′S′M ′B′,‘LSMB(k
′, k,W )

×[< TMT |i′Mτ ′Bm′
iM
m′

τB
>< JMJ |L′S ′m′

Lm
′
S >< S ′m′

S|j′Mj′Bm′
jM
m′

jB
> Y ∗

L′m′

L
(k̂

′

)]

×[< TMT |iMτBmiMmτB >< JMJ |LSmLmS >< SmS|jMjBmjMmjB > YLmL
(k̂)] , (62)

where < jmj|j1j2mj1mj2 > is the Clebsch-Gordon coefficient for the ~j1 + ~j2 = ~j coupling,
[(jMmjM ), (iMmiM )] and [(jBmjB), (τBmτB )] are the spin-isospin quantum numbers of mesons
and baryons, respectively; (JMJ)((TMT )) are the total angular momentum (total isospin),
(LML) ((SMS)) are the relative orbital angular momentum (total spin) of the considered
two-body systems.

By choosing the incoming momentum ~k in the quantization z-component, the total
MB →M ′B′ cross sections are

σtot
MB→M ′B′(W ) =

∫

dΩk′
dσMB→M ′B′

dΩk′
. (63)
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By optical theorem and the above partial-wave expansion, one can get the πN → X total
cross sections averged over the initial spins:

σtot
πN→X(W ) =

−4π

(2sN + 1)k2
∑

J,T,L

(2J + 1) ρπN(k) Im[tJTL 1
2
πN,L 1

2
πN(k, k,W )]× [< TMT |1

1

2
miπmτN >]2 ,

(64)

where MT = miπ +mτN and sN = 1/2 is the nucleon spin .
The ANL-Osaka partial-wave amplitudes tJTL′S′M ′B′,LSMB(k

′, k,W ) can be obtained from
the following quantities presented on the webpage:

< M ′B′|T (W )|MB >= −ρ1/2M ′B′(k′)tJTL′S′M ′B′,LSMB(k
′, k,W )ρ

1/2
MB(k) , (65)

for MB,M ′B′ = πN, ηN,KΛ, KΣ and W = Wth − 2000 MeV, where Wth is the lower one
of the two threshold energies mM +mB and mM ′ +mB′ . The phase space factors ρMB(k)
and ρM ′B′(k′) are defined by Eq.(61).

B. Electro-production of pions

For the pion electroproduction, ( e(pe)+N(pN) → e′(p′e)+π(k)+N(p′N)), the differential
cross section is conventionally written as

dσ

dE ′
edΩe′dΩπ

= Γ
dσv

dΩπ
, (66)

where Q2 = −q2, q = pe − p′e = (ωL, qL), W =
√

(pN + q)2, and

Γ =
αqγL

2π2Q2

E ′
e

Ee

1

1− ǫ
. (67)

Here, we have defined α = e2/4π = 1/137 and the effective photon energy in the laboratory
system and ǫ are given as

qγL =
W 2 −m2

N

2mN

, (68)

ǫ = [1 +
2q2

L

Q2
tan2 θe

2
]−1, (69)

where θe is the angle between the outgoing and incoming electrons, and mN is the nucleon
mass and qL is momentum transfer in the laboratory system.

The differential cross section dσv/dΩπ in Eq. (66) is defined in final πN center of mass
frame with the following coordinate system:

ẑ = q̂ =
q

|q| (70)

ŷ =
q × k

|q × k| (71)

x̂ = ŷ × ẑ (72)
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We then have the following expression:

dσv

dΩπ
=

dσT
dΩπ

+ ǫ
dσL
dΩπ

+ ǫ
dσTT

dΩπ
cos 2φπ +

√

2ǫ(ǫ+ 1)
dσLT
dΩπ

cos φπ

+he
√

2ǫ(1− ǫ)
dσLT ′

dΩπ
sinφπ , (73)

where he is the helicity of the incoming electron, φπ is the pion angle measured from the
e− e′ scattering plane of electron, and

dσT
dΩπ

=
|k|
|qγ|

∑

spin

F xx + F yy

2
, (74)

dσL
dΩπ

=
|k|
|qγ|

∑

spin

Q2

|q|2F
00 , (75)

dσTT

dΩπ
=

|k|
|qγ|

∑

spin

F xx − F yy

2
, (76)

dσLT
dΩπ

=
|k|
|qγ|

∑

spin

(−1)

√

√

√

√

Q2

|q|2Re(F
x0) , (77)

dσLT ′

dΩπ
=

|k|
|qγ|

∑

spin

√

√

√

√

Q2

|q|2Im(F x0) . (78)

Here q is the momentum transfer to the initial nucleon and k is the pion momentum in the
center of mass system of the final πN state:

ω =
W 2 −M2

N −Q2

2W
, (79)

|q| =
√

Q2 + ω2 , (80)

|k| =

√

(
W 2 +m2

π −M2
N

2W
)2 −m2

π , (81)

and

|qγ| =
W 2 −M2

N

2W
. (82)

Here ω and qγ are the energy transfer and the effective photon energy in the center of mass
system. Integrating pion angles, Eqs.(66) and (73) lead to

dσ

dE ′
edΩe′

(Q2,W ) = Γ[σT (Q
2,W ) + ǫσL(Q

2,W )]. (83)

where

σT/L =
∑

π+,π0

∫

dΩπ

dσT/L
dΩπ

(84)
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In the coordinate system defined by Eqs.(70)-(72), the pion momentum k is on the x− z
plane. We thus can defne

k̂ = k/|k| = cos θẑ + sin θx̂ , (85)

where θ is the angle between the outgoing pion and the virtual photon. The quantities F ij

with i, j = x, y, 0 in Eqs. (74)-(78) are defined as

∑

spin

F ij =
1

2

∑

msi
,msf

< msf |F i|msi >< msf |F j|msi >
∗ , (86)

where ms is the z-component of the nucleon spin, and F i is defined by the Chew-Goldberger-
Low-Nambu (CGLN) amplitude FCGLN = Fµǫµ.

The CGLN amplitude can be expressed in terms of Pauli operator σ, q̂, k̂ and the photon
polarization vector ǫµ = (ǫ0, ǫ)

Fµǫµ = −(iσ · ǫ⊥F1 + σ · k̂σ · q̂ × ǫ⊥F2 + iσ · q̂k̂ · ǫ⊥F3 + iσ · k̂k̂ · ǫ⊥F4

+iσ · q̂q̂ · ǫF5 + iσ · k̂q̂ · ǫF6) + iσ · k̂ǫ0F7 + iσ · q̂ǫ0F8 , (87)

where ǫ⊥ = q̂ × (ǫ × q̂). By using Eq.(85) and choosing ǫµ = (ǫ0, ǫ) =
(0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0) to evaluate Eq.(87), we then have

Fx = iσx(F1 − cos θF2 + sin2 θF4 + iσz sin θ(F2 + F3 + cos θF4) , (88)

Fy = iσy(F1 − cos θF2)− sin θF2 , (89)

F0 = iσz(cos θF7 + F8) + iσy sin θF7 . (90)

The amplitudes Fi are calculated from the multipole amplitudes El±,Ml±, Sl± and Ll± of
the γ∗ +N → πN process :

F1 =
∑

l

[P ′
l+1(x)El+(Q

2,W ) + P ′
l−1(x)El−(Q

2,W ) + lP ′
l+1(x)Ml+(Q

2,W )

+(l + 1)P ′
l−1(x)Ml−(Q

2,W )] , (91)

F2 =
∑

l

[(l + 1)P ′
l (x)Ml+(Q

2,W ) + lP ′
l (x)Ml−(Q

2,W )] , (92)

F3 =
∑

l

[P ′′
l+1(x)El+(Q

2,W ) + P ′′
l−1(x)El−(Q

2,W )− P ′′
l+1(x)Ml+(Q

2,W )

+P ′′
l−1(x)Ml−(Q

2,W )] , (93)

F4 =
∑

l

[−P ′′
l (x)El+(Q

2,W )− P ′′
l (x)El−(Q

2,W ) + P ′′
l (x)Ml+(Q

2,W )− P ′′
l (x)Ml−(Q

2,W )] ,(94)

F5 =
∑

l

[(l + 1)P ′
l+1(x)Ll+(Q

2,W )− lP ′
l−1(x)Ll−(Q

2,W )] , (95)

F6 =
∑

l

[−(l + 1)P ′
l (x)Ll+(Q

2,W ) + lP ′
l (x)Ll−(Q

2,W )] , (96)

F7 =
∑

l

[−(l + 1)P ′
l (x)Sl+(Q

2,W ) + lP ′
l (x)Sl−(Q

2,W )] , (97)

F8 =
∑

l

[(l + 1)P ′
l+1(x)Sl+(Q

2,W )− lP ′
l−1(x)Sl−(Q

2,W )] , (98)
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where x = q̂ · k̂, PL(x) is the Legendre function, P ′
L(x) = dPL(x)/dx and P ′′

L(x) =
d2PL(x)/d

2x. For the photo-production process γN → πN , the differential cross section
is dσT/dΩπ with Q2 = 0.

The ANL-Osaka multipole amplitudes El±(Q
2,W ), Ml±(Q

2,W ), and Ll±(Q
2,W ) for

W = 1080− 2000 MeV and Q2 = 0− 3 (GeV/c)2 are presented on the webpage.
‘

C. Photo-production of mesons

In the center of mass system, the formula for calculating the un-polarized differential cross
section of the photo-production of pseudo-scalar mesons (M = π, η, K) on the nucleon (N),
γ(q) +N(−q) →M(k) +N(−k), is

dσ0
dΩ

=
1

4

∑

msN
=±1/2

∑

m′

sN
=±1/2

∑

λ=±1

k

q
| < m′

sN
|FCGLN |msN > |2 (99)

where the Chew-Goldberger-Low-Nambu (CGLN) amplitude is defined as

FCGLN =
∑

i=1,4

OiFi(θ,W ) . (100)

Here we have defined W = q +EN(q) = EM(k) +EN (k), where Eα(p) =
√

m2
α + p2 and mα

is the mass of particle α, and θ is the angle between k and q. The operators in the above
equation are:

O1 = −iσ · ǫλ
O2 = −[σ · k̂][σ · q̂ × ǫλ]

O3 = −i[σ · q̂][k̂ · ǫλ]
O4 = −i[σ · k̂][k̂ · ǫλ]

where k̂ = k/|k| and q̂ = q/|q| = ẑ, and σ is the standard Pauli operator. The quantization
direction is chosen to be in the ẑ-direction, and the photon polarization vectors are ǫ± =
∓√
2
[x̂± iŷ]. The CGLN amplitudes Fi can be calculated from the multipole anplitudes with

Q2 = 0, El±(W ) and Ml±(W ), by using Eqs.(91)-(94).
The ANL-Osaka multipole amplitudes El±(W ) and Ml±(W ) at Q2 = 0 for γN →

πN, ηN,ΛN,ΣN and W = 1080− 2000 MeV are presented on the webpage.
The formula for using the multipole amplitudes to calculate the polarization observables

can be found in Ref.[15].

D. Inclusive N(e, e′) cross sections

For the inclusive process, e(pe) + N(pN ) → e′(p′e) + X , the differential cross section is
written by using structure functions Wi as

dσ

dE ′
edΩe′

(Q2,W ) =
α2

4E2
e sin

4 θe
2

[W2(Q
2,W ) cos2

θe
2
+ 2W1(Q

2,W ) sin2 θe
2
] (101)
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The structure functions are defined from the hadron tensor W µν as

W µν =
∑

ī

∑

f

(2π)3δ4(P + q − P ′)
EN (P )

mN
< f(P ′)|Jµ

em|N(P ) >< f(P ′)|Jν
em|N(P ) >∗

= (−gµν + qµqν

q2
)W1(Q

2,W ) +
W2(Q

2,W )

m2
N

P̂ µP̂ ν, (102)

where P̂ µ = P µ − qµ(P · q)/q2.
The structure functions are also expressed by virtual photon cross sections σX

T and σX
L as

W1(Q
2,W ) =

qγL
4π2α

σX
T (Q2,W ) (103)

W2(Q
2,W ) =

qγL
4π2α

Q2

q2
L

[σX
T (Q2,W ) + σX

L (Q2,W )]. (104)

The inclusive cross section can then be written as

dσ

dE ′
edΩe′

(Q2,W ) = Γ[σX
T (Q2,W ) + ǫσX

L (Q2,W )]. (105)

where ǫ is defined in Eq.(69). If only the single pion contribution to W1 and W2 is kept in
evaluating Eq.(102), σX

T/L will be identical to σT/L defined in Eq.(83).

The ANL-Osaka structure functions W1(Q
2,W ) and W2(Q

2,W ) for Q2 = 0− 3(GeV/c)2

and W = 1080− 2000 MeV are presented on the webpage.

E. πN → ππN cross sections

In the center of mass frame, the momentum variables of the πN → ππN reaction with
invariant mass W can be specified as

a(~pa) + b(~pb) → c(~pc) + d(~pd) + e(~pe) , (106)

where ~pa = −~pb = ~k with k defined byW = Ea(k)+Eb(k), ~pc+~pd = −~pe = ~k′, and (c+d+e)
can be any possible charged states formed from two pions and one nucleon. The total cross
section of the process Eq. (106) can be written as

σrec
ab→cde =

∫ W−me

mc+md

dσrec

dMcd

dMcd , (107)

with

dσrec

dMcd
=
ρi
k2

16π3
∫

dΩkcddΩk′
kcdk

′

W

1

(2sa + 1)(2sb + 1)

∑

i,f

|
√

EcEdEe〈~pc~pd~pe, f |T |~k, i〉|2 ,

(108)

where ρi = π kEa(k)Eb(k)
W

,i, f denote all spin (sa, saz) and isospin (ta, taz) quantum numbers,
and

∑

i,f means summing over only spin quantum numbers. For a given invariant mass Mcd,
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~kcd is the relative momentum between c and d in the center of mass of the sub-system (cd)
. It follows that k′ and kcd are defined by W and Mcd:

Mcd = Ec(kcd) + Ed(kcd) ,

W = Ee(k
′) + Ecd(k

′) ,

Ecd(k
′) =

√

M2
cd + (k′)2 . (109)

The T -matrix elements in the Eq. (108) are of the following form

〈~pc~pd~pe, f |T |~k, i〉 =
∑

sRz ,tRz

〈~pc, scz, tcz; ~pd, sdz, tdz|HI |~k′, sRz, tRz
〉

W − Ee(k′)− ER(k′)− ΣeR(k′, E)

×〈~k′, sRz, tRz;−~k′, sez, tez|T |~k, saz, taz ;−~k, sbz, tbz〉 , (110)

where R is a bare state which has R → cd decay channel. For the eR = π∆ and eR = ρN
channels, the self-energies are explicitly given by

Σπ∆(k;W ) =
m∆

E∆(k)

∫

q2dq
MπN (q)

[M2
πN(q) + k2]1/2

|f∆→πN(q)|2
W − Eπ(k)− [M2

πN(q) + k2]1/2 + iǫ
,(111)

ΣρN(k;W ) =
mρ

Eρ(k)

∫

q2dq
Mππ(q)

[M2
ππ(q) + k2]1/2

|fρ→ππ(q)|2
W − EN(k)− [M2

ππ(q) + k2]1/2 + iǫ
, (112)

where m∆ = 1280 MeV, mρ = 812 MeV, MπN(q) = Eπ(q) + EN (q), and Mππ(q) = Eπ(q) +
Eπ(q). The form factors f∆→πN(q) and fρ→ππ(q) are for describing the ∆ → πN and ρ→ ππ
decays in the ∆ and ρ rest frames, respectively. They are parametrized as:

f∆→πN(q) = −i (0.98)

[2(mN +mπ)]1/2

(

q

mπ

)

(

1

1 + [q/(358 MeV)]2

)2

, (113)

fρ→ππ(q) =
(0.6684)√

mπ

(

q

(461 MeV)

)(

1

1 + [q/(461 MeV)]2

)2

. (114)

The σ self-energy ΣσN (k;E) is calculated from a ππ s-wave scattering model with a vertex
function g(q) for the σ → ππ decay and a separable interaction v(q′, q) = h0h(q

′)h(q). The
resulting form is

ΣσN (k;W ) = 〈gGππg〉(k;W ) + τ(k;E)[〈gGππh〉(k;W )]2, (115)

with

τ(k;W ) =
h0

1− h0〈hGππh〉(k;W )
, (116)

〈hGππh〉(k;W ) =
∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× h(q)2

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

, (117)

〈gGππg〉(k;W ) =
mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2
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× g(q)2

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

, (118)

〈gGππh〉(k;W ) =

√

mσ

Eσ(k)

∫

dqq2
Mππ(q)

[M2
ππ(q) + k2]1/2

× g(q)h(q)

W −EN (k)− [M2
ππ(q) + k2]1/2 + iε

. (119)

In the above equations, mσ = 700.0 MeV and the form factors are

g(p) =
g0√
mπ

1

1 + (cp)2
, (120)

h(p) =
1

mπ

1

1 + (dp)2
. (121)

where g0 = 1.638, h0 = 0.556, c = 1.02 fm, and d = 0.514 fm.
For any spins and isospins and c.m. momenta ~p and ~p

′

, the MB → M ′B′ T -matrix
elements in Eq.(110) are in general defined by

〈~p′, sM ′z, tM ′z;−~p′, sB′z, tB′z|T |~p, sMz, tMz;−~p, sBz, tBz〉
=

∑

JM,TTz

∑

L′M ′

L
,S′S′

z

∑

LML,SSz

YL′,M ′

L
(p̂′)Y ∗

L,ML
(p̂)

×〈sM ′, sB′ , sM ′z, sB′z|S ′, S ′
z〉〈L′, S ′,M ′

L, S
′
z|J,M〉〈tM ′, tB′ , tM ′z, tB′z|T, Tz〉

×〈sM , sB, sMz, sBz|S, Sz〉〈L, S,ML, Sz|J,M〉〈tM , tB, tMz, tBz|T, Tz〉
×tJTL′S′M ′B′,LSMB(p

′, p,W ), (122)

where the matrix elements tJTL′S′M ′B′,LSπN(p
′, p,W ) for M ′B′ = π∆, σN, ρN are the PWA

from the ANL-Osaka model.
The matrix elements of HI of Eq. (110) describe the decay of a resonance R = ∆, ρ, σ

into a two-particle state cd. It is of the following expression

〈~pc, scz, tcz; ~pd, sdz, tdz|HI |~k′, sRz, tRz〉

= δ(~pc + ~pd − ~k′)

√

√

√

√

Ec(kcd)Ed(kcd)MR

Ec(pc)Ed(pd)ER(k′)
〈~kcd, scz, tcz;−~kcd, sdz, tdz|HI |~0, sRz, tRz〉, (123)

with

〈~kcd, scz, tcz;−~kcd, sdz, tdz|HI |~0, sRz, tRz〉
=

∑

Lcd,Scd,mcd,Scdz

[〈sc, sd, scz, sdz|Scd, Scdz〉〈Lcd, Scd, mcd, Scdz|sR, sRz〉

×〈tc, td, tcz, tdz|tR, tRz〉YLcd,mcd
(k̂cd)FLR

cd
,SR

cd
(kcd)]δLcd,L

R
cd
δScd,S

R
cd
. (124)

The vertex functions are

FL∆
πN

,S∆
πN

(q) = if∆→πN(q) , (125)

FLσ
ππ,S

σ
ππ
(q) =

√
2g(q) , (126)

FLρ
ππ,S

ρ
ππ
(q) = (−1)

√
2fρ→ππ(q) , (127)
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where L∆
πN = 1, S∆

πN = 3/2, Lσ
ππ = 0, Sσ

ππ = 0, Lρ
ππ = 1, Sρ

ππ = 1. Here it is noted that the
factor

√
2 in Eqs. (126)-(127) comes from the Bose symmetry of pions, and the phase factor

i and (−1) are chosen to be consistent with the non-resonant interactions involving πN∆,
σππ and ρππ vertex interactions. The form factors f∆→πN(q) and fρ→ππ(q) have been in
Eqs.(113)-(114) and g(q) in Eq.(120).

With the above equations, the contribution from πN → π∆ → ππN to the total cross
section σrec

πN→ππN , as defined by Eq. (107)-(108), can be written as

σrec
π∆(W ) =

∫ W−mπ

mN+mπ

dMπN
MπN

E∆(k)

Γ∆/(2π)

|W − Eπ(k)− E∆(k)− Σπ∆(k,W )|2 × σπN→π∆ ,(128)

where k and E∆(k) are defined by W and MπN

k =
1

2W
[(W 2 −M2

πN −m2
π)

2 − 4M2
πNm

2
π]

1/2 , (129)

E∆(k) = [m2
∆ + k2]1/2 , (130)

Σπ∆(k,W )is defined in Eq. (111), Γ∆ = −2Im[Σπ∆(k = 0,W )], and

σπN→π∆ =
4π

k20

∑

JT,L′S′,LS

2J + 1

(2SN + 1)(2Sπ + 1)
|ρ1/2π∆(k)t

JT
L′S′π∆,LSπN(k, k0;W )ρ

1/2
πN(k0)|2

×〈tπ, tN , tzπ, tzN |T, T z〉2 , (131)

where k0 is defined by W = Eπ(k0) + EN(k0) and ρab(k) = πkEa(k)Eb(k)/W . Similarly,
the contributions of πN → ρN → ππN and πN → σN → ππN to the total cross section
σrec
πN→ππN are

σrec
aN (W ) =

∫ W−mN

2mπ

dMππ
Mππ

Ea(k)

Γa/(2π)

|W − EN(k)− Ea(k)− ΣaN (k,W )|2 × σπN→aN ,(132)

where a = ρ, σ, k is defined by Mππ and W

k =
1

2W
[(W 2 −M2

ππ −m2
N )

2 − 4M2
ππm

2
N ]

1/2 , (133)

Ea(k) = [m2
a + k2]1/2 , (134)

ΣaN (k,W ) for aN = ρN, σN are is defined in Eqs.(104) and (107), Γa = −2Im[ΣaN (k =
0,W )], and

σπN→aN =
4π

k20

∑

JT,L′S′,LS

2J + 1

(2SN + 1)(2Sπ + 1)
|ρ1/2aN (k)tJTL′S′aN,LSπN(k, k0;W )ρ

1/2
πN(k0)|2

×〈tπ, tN , tzπ, tzN |T, T z〉2 . (135)

To perform calculations, we need to have the partial-wave amplitudes
tJTL′S′M ′B′,LSπN(p, k,W ) for M ′B′ = π∆, ρN, σN . These PWA from ANL-Osaka model
can be obtained from the webpage which present the following :

< π∆|T (W )|πN >= −ρ1/2π∆(p∆)t
JT
L′S′π∆,LSπN(p∆, k,W )ρ

1/2
πN(k) ,

< ρN |T (W )|πN >= −ρ1/2ρN (pρ)t
JT
L′S′ρN,LSπN(pρ, k,W )ρ

1/2
πN(k) ,

< σN |T (W )|πN >= −ρ1/2σN (pσ)t
JT
L′S′σN,LSπN(pσ, k,W )ρ

1/2
πN(k) ,

(136)
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Here the phase space factors account for the effects due to ∆ → πN , σ → ππ and ρ → ππ
decays. Explicitly, we have

ρπ∆(p∆) = π
p∆E∆(p∆)Eπ(p∆)

W
, (137)

where p∆ and E∆(p∆) are defined by W and the invariant mass MπN in the integrations of
Eqs.(107) and (128)

p∆ =
1

2W
[(W 2 −M2

πN −m2
π)

2 − 4M2
πNm

2
π]

1/2 , (138)

E∆(p∆) = [M2
πN + p2∆]

1/2 , (139)

For the calculations of Eqs.(107) and (128), we thus present < π∆|T (W )|πN > in the range
0 ≤ p∆ ≤ p∆,max with

p∆,max =
1

2W
[(W 2 − (mπ +mN)

2 −m2
π)

2 − 4(mπ +mN )
2m2

π]
1/2 . (140)

For the ρN and σN channels, we have

ρ
1/2
σN (pσ) = π

pσEσ(pσ)EN(pσ)

W
, (141)

ρ
1/2
ρN (pρ) = π

pρEρ(pρ)EN(pρ)

W
, (142)

For a = σ and ρ, we have

pa =
1

2W
[(W 2 −M2

ππ −m2
N )

2 − 4M2
ππm

2
N ]

1/2 , (143)

Ea(pa) = [M2
ππ + p2a]

1/2 . (144)

For the calculation of Eqs.(107) and (132), we thus present < ρN |T (W )|πN > and <
σN |T (W )|πN > in the range 0 ≤ pa ≤ pa,max with

pa,max =
1

2W
[(W 2 − (2mπ)

2 −m2
N)

2 − 4(2mπ)
2m2

N ]
1/2 . (145)

The above equations are for the calculations of the πN → ππN through the resonant π∆,
σN and ρN channels. There are also weaker contributions from the direct production mech-
anisms, as illustrated in Fig. 5, which can be calculated by using the procedures explained
in Ref. [11].
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FIG. 5: The considered vπN,ππN .
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V. DATA

The parameters of the ANL-Osaka DCC model were determined by performing χ2-fits
to the data of πN, γN → πN, ηN,KΛ, KΣ. The calculations involve solving the coupled-
channel Eqs. (5)-(25). The meson-baryon partial-waves included in the calculations are
listed in Table I. The total number of the data included in the fits are about 30,000 data
points, as listed in table II-V.

Note that the 1940 data points for πN → πN listed in Table II are in fact contain
information of about 30,000 data in the SAID analysis : 14196 of π+p → π+p, 13895 of
π−p → π−p, and 2877 of π−p → π0n. In addition, the partial-wave amplitudes of πN →
ππN determined from the very extensive bubble-chamber data of πN → ππN were also
used in the earlier analysis of SAID. Thus the determined PWA for πN → πN, π∆, ρN, σN
are rather reliable.

On the other hand, the data points for πN → ηN,KΛ, KΣ listed in Table III are much
less, only 294, 941, and 1262, respectively. Thus the determined PWA for these processes
need to be improved by using more extensive data which could be available from experiments
at J-PARC in near future.

In Tables IV and V, we see that the data points for γN → πN are much more than
those of γN → ηN,KΛ, KΣ. Therefore, the γN → N∗ couplings are mainly determined
by the predicted multipole amplitudes of γN → πN . It will be interesting to include more
new JLab data of γN → KΛ, KΣ in the analysis to further improve the determination of
γN → N∗ couplings which are crucial to test the predictions from LQCD and various hadron
models.

21



TABLE I: The orbital angular momentum (L) and total spin (S) of each MB channel allowed in a

given partial wave. In the first column, partial waves are denoted with the conventional notation

l2I2J as well as (I,JP ).

l2I2J (I, JP ) (L,S) of the considered partial waves

πN ηN π∆ σN ρN KΛ KΣ

(π∆)1 (π∆)2 (ρN)1 (ρN)2 (ρN)3

S11 (1, 12
−
) (0, 12) (0, 12) (2, 32 ) – (1, 12) (0, 12 ) (2, 32) – (0, 12) (0, 12)

S31 (3, 12
−
) (0, 12) – (2, 32 ) – – (0, 12 ) (2, 32) – – (0, 12)

P11 (1, 12
+
) (1, 12) (1, 12) (1, 32 ) – (0, 12) (1, 12 ) (1, 32) – (1, 12) (1, 12)

P13 (1, 32
+
) (1, 12) (1, 12) (1, 32 ) (3, 32) (2, 12) (1, 12 ) (1, 32) (3, 32) (1, 12) (1, 12)

P31 (3, 12
+
) (1, 12) – (1, 32 ) – – (1, 12 ) (1, 32) – – (1, 12)

P33 (3, 32
+
) (1, 12) – (1, 32 ) (3, 32) – (1, 12 ) (1, 32) (3, 32) – (1, 12)

D13 (1, 32
−
) (2, 12) (2, 12) (0, 32 ) (2, 32) (1, 12) (2, 12 ) (0, 32) (4, 32) (2, 12) (2, 12)

D15 (1, 52
−
) (2, 12) (2, 12) (2, 32 ) (4, 32) (3, 12) (2, 12 ) (2, 32) (4, 32) (2, 12) (2, 12)

D33 (3, 32
−
) (2, 12) – (0, 32 ) (2, 32) – (2, 12 ) (0, 32) (2, 32) – (2, 12)

D35 (3, 52
−
) (2, 12) – (2, 32 ) (4, 32) – (2, 12 ) (2, 32) (4, 32) – (2, 12)

F15 (1, 52
+
) (3, 12) (3, 12) (1, 32 ) (3, 32) (2, 12) (3, 12 ) (1, 32) (3, 32) (3, 12) (3, 12)

F17 (1, 72
+
) (3, 12) (3, 12) (3, 32 ) (5, 32) (4, 12) (3, 12 ) (3, 32) (5, 32) (3, 12) (3, 12)

F35 (3, 52
+
) (3, 12) – (1, 32 ) (3, 32) – (3, 12 ) (1, 32) (3, 32) – (3, 12)

F37 (3, 72
+
) (3, 12) – (3, 32 ) (5, 32) – (3, 12 ) (3, 32) (5, 32) – (3, 12)

G17 (1, 72
−
) (4, 12) (4, 12) (2, 32 ) (4, 32) (3, 12) (4, 12 ) (2, 32) (4, 32) (4, 12) (4, 12)

G19 (1, 92
−
) (4, 12) (4, 12) (4, 32 ) (6, 32) (5, 12) (4, 12 ) (4, 32) (6, 32) (4, 12) (4, 12)

G37 (3, 72
−
) (4, 12) – (2, 32 ) (4, 32) – (4, 12 ) (2, 32) (4, 32) – (4, 12)

G39 (3, 92
−
) (4, 12) – (4, 32 ) (6, 32) – (4, 12 ) (4, 32) (6, 32) – (4, 12)

H19 (1, 92
+
) (5, 12) (5, 12) (3, 32 ) (5, 32) (4, 12) (5, 12 ) (3, 32) (5, 32) (5, 12) (5, 12)

H39 (3, 92
+
) (5, 12) (5, 12) (3, 32 ) (5, 32) – (5, 12 ) (3, 32) (5, 32) – (5, 12)
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TABLE II: Number of the data points of πN → πN amplitudes included in our fits. The data

are from SAID analysis of 14196 data points of π+p → π+p, 13895 of π−p → π−p, and 2877 of

π−p → π0p.

Partial Wave Partial Wave

S11 65×2 S31 65×2

P11 65×2 P31 61×2

P13 61×2 P33 65×2

D13 61×2 D33 55×2

D15 61×2 D35 45×2

F15 48×2 F35 43×2

F17 32×2 F37 44×2

G17 42×2 G37 32×2

G19 28×2 G39 32×2

H19 34×2 H39 31×2

Sum 994 946 1940

TABLE III: Number of data points of hadronic processes included in our fits. Data are from the

compilation of Bonn-Gatchina.

dσ/dΩ P R a sum

π−p → ηp 294 – – – 294

π−p → K0Λ 587 354 – – 941

π−p → K0Σ0 259 90 – – 349

π+p → K+Σ+ 609 304 – – 913

Sum 1749 748 – – 2497

TABLE IV: The number of data points of photoproduction processes included in our fits. The

data are from compilation of Bonn-Gatchina.

dσ/dΩ Σ T P G H E F Ox′ Oz′ Cx′ Cz′ sum

γp → π0p 4414 1866 389 607 75 71 140 – 7 7 – – 7576

γp → π+n 2475 899 661 252 86 128 231 – – – – – 4732

γp → ηp 780 151 50 – – – – – – – – – 981

γp → K+Λ 1320 118 66 1336 – – – – 160 159 66 66 3291

γp → K+Σ0 1280 87 – 95 – – – – – – 94 94 1650

γp → K0Σ+ 276 15 – 72 – – – – – – – – 363

Sum 10545 3136 1166 2362 161 199 371 – 167 166 160 160 18593
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TABLE V: Observables and number of the data points considered in this coupled-channels analysis.

The data are taken from the database of the INS DAC Services.

Reactions Observables Number of data points

γ‘n’ → π−p dσ/dΩ 2305

Σ 308

T 94

P 88

γ‘n’ → π0n dσ/dΩ 148

Σ 216

Sum 3159

TABLE VI: Number of data points of p(e, e′π)N included in our fits. The data are for about 25

Q2 with W < 2000 MeV.

σT + ǫσL σTT σLT σ′
LT sum

p(e, e′π0)p 5830 5830 5830 240 17730

p(e, e′π+)n 2614 2614 2614 566 8408

Sum 8444 8444 8444 806 26138
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VI. RESULTS

The nucleon resonance properties extracted from ANL-Osaka amplitudes were finalized
in 2016 and published in Ref. [17]. In Table VII, we list the pole positions and the residues
RπN,πN of the extracted resonances. In Ref. [16], the residues for RπN,ηN , RπN,KΛ, and
RπN,KΣ are also given. However these results are not as solid as that of RπN,πN because
the data of πN → ηN,KΛ, KΣ included in the fits are not as accurate as the data of
πN → πN . The residues associated with the unstable channels π∆, ρN and σN are also
not given because the analytic continuation of the PWA associated with these channels to
complex E-plane is rather complex and a rigorous way to do this remains to be explored.

The determined helicity amplitudes for the γp → N∗ transition at resonance pole po-
sitions, published in Ref. [17], are listed in Table VIII. However the Q2-dependence of
γp → N∗ transitions at resonance pole was not extracted because only the data at few Q2

were included in the fits.
To illustrate the quality of our fits to the data, we present sample results from our analysis

in the Appendix: (A) Total cross sections of πN reactions, (B) Total cross sections of γN
reactions, (C) Differential cross sections of πN → πN, ηN, KΛ, KΣ, (D) Differential cross
sections of γN → πN, ηN, KΛ, KΣ, (E) Differential cross sections of γ∗N → πN , (F)
Inclusive cross sections of p(e, e′).
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TABLE VII: The extracted nucleon resonance pole mass (MR) and πN elastic residue (RπN,πN ).

MR is listed as (Re(MR),−Im(MR)) in units of MeV, while RπN,πN = |RπN,πN |eiφ is listed as

(|RπN,πN |, φ) in units of MeV for |RπN,πN | and degree for φ. The range of φ is taken to be

−180◦ ≤ φ < 180◦. The N∗ resonances for which the asterisk (*) is marked locate in the complex

energy plane slightly off the sheet closest to the physical real energy axis, yet are still expected to

visibly affect the physical observables.

JP (L2I2J) MR RπN,πN

N∗ 1/2−(S11) (1490, 102) (70, −42)

(1652, 71) (45, −74)

1/2+(P11) (1376, 75) (38, −70)

(1741, 139) (15, 80)

3/2+(P13) (1708, 65) (9, −4)

(1765, 160) (30, −105)

3/2−(D13) (1509, 48) (30, −10)

(1702, 148)* (< 1, −161)

5/2−(D15) (1651, 68) (26, −27)

5/2+(F15) (1665, 52) (36, −22)

∆∗ 1/2−(S31) (1597, 69) (21, −111)

(1713, 187) (20, 73)

1/2+(P31) (1857, 145) (11, −118)

3/2+(P33) (1212, 52) (55, −47)

(1733, 162) (16, −108)

3/2−(D33) (1577, 113) (13, −67)

5/2−(D35) (1911, 130) (4, −30)

5/2+(F35) (1767, 88) (11, −61)

7/2+(F37) (1885, 102) (49, −30)
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TABLE VIII: The determined helicity amplitudes for the γp → N∗ transition at resonance pole

positions. The presented values follow the notation: A1/2,3/2 = Ā1/2,3/2 × eiφ with φ taken to be in

the range −90◦ ≤ φ < 90◦. The units of Ā1/2,3/2 and φ are 10−3 GeV−1/2 and degree, respectively.

Each resonance is specified by the isospin and spin-parity quantum numbers as well as the real

part of the resonance pole mass.

Particle JP (L2I2J) Ā1/2 φ Ā3/2 φ

N(1490)1/2−(S11) 160 8 - -

N(1652)1/2−(S11) 36 −28 - -

N(1376)1/2+(P11) −40 −8 - -

N(1741)1/2+(P11) −47 −24 - -

N(1708)3/2+(P13) 131 7 −33 12

N(1765)3/2+(P13) 123 −11 −71 3

N(1509)3/2−(D13) −28 < 1 102 4

N(1703)3/2−(D13) 13 50 31 −71

N(1651)5/2−(D15) 8 19 49 −12

N(1665)5/2+(F15) −44 −11 60 −2

∆(1597)1/2−(S31) 105 1 - -

∆(1713)1/2−(S31) 40 13 - -

∆(1857)1/2+(P31) −1 −78 - -

∆(1212)3/2+(P33) −134 −16 −257 −3

∆(1733)3/2+(P33) −48 63 −94 74

∆(1577)3/2−(D33) 128 19 119 46

∆(1911)5/2−(D35) 48 −22 11 −36

∆(1767)5/2+(F35) 38 −7 −24 −80

∆(1885)7/2+(F37) −69 −14 −83 2
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TABLE IX: The isovector and isoscalar helicity amplitudes for γN → N∗ are defined as AT=1
λ =

(Ap
λ −An

λ), and AT=0
λ = (Ap

λ +An
λ), where Ap

λ and An
λ are the helicity amplitudes of γp → N∗ and

γn → N∗, respectively. See the caption of Table VIII for the notation of the table.

Particle JP (L2I2J) ĀT=1
1/2 φ ĀT=0

1/2 φ ĀT=1
3/2 φ ĀT=0

3/2 φ

N(1490)1/2−(S11) 136 11 26 −10 - - - -

N(1652)1/2−(S11) 19 −29 18 −28 - - - -

N(1376)1/2+(P11) −68 −13 28 −21 - - - -

N(1741)1/2+(P11) −120 −11 75 −3 - - - -

N(1708)3/2+(P13) 95 7 36 8 −9 68 −29 −2

N(1765)3/2+(P13) 78 −10 45 −14 −55 4 −16 −2

N(1509)3/2−(D13) 7 −2 −35 −1 106 4 −5 8

N(1703)3/2−(D13) 20 −28 −22 −63 54 −61 −24 −48

N(1651)5/2−(D15) 42 4 −34 1 44 −8 6 −37

N(1665)5/2+(F15) −39 −11 −5 −8 58 −3 2 18
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Appendix A: Total Cross sections of πN reactions
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FIG. 6: σtot of π±p → X,ππN
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FIG. 7: σtot of π±p → πN, ηN,KΛ,KΣ
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FIG. 8: Total cross sections for π±p → (MB)R → ππN (dashed curves) are compared with π±p →
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σN .

31



Appendix B: Total Cross sections of γN reactions
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FIG. 9: Top :γp → X,π0p, π+n, dashed curves are our previous analysis; Lower four figures:
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Appendix C: Differential cross sections of πN reactions

1. πN → πN
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FIG. 10: Differential cross section for πN → πN . The red solid curves are the current results while

the blue dashed curves are from our previous analysis of 2007.
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FIG. 11: The target polarization P of πN → πN . The red solid curves are the current results

while the blue dashed curves are from our previous analysis of 2007.
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2. πN → ηN
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FIG. 12: Differential cross sections of π−p → ηn. The red solid curves are the current results while

the blue dashed curves are from our previous analysis of 2007.

3. πN → KΛ
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FIG. 13: Differential cross sections of π−p → K0Λ0. The red solid curves are the current results

while the blue dashed curves are from our previous analysis of 2007.

4. πN → KΣ
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FIG. 14: Differential cross sections of π−p → K0Λ0. The red solid curves are the current results

while the blue dashed curves are from our previous analysis of 2007.
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FIG. 15: Differential cross sections of π+p → K+Σ+(upper) and π−p → K0Σ0(lower). The red

solid curves are the current results while the blue dashed curves are from our previous analysis of

2007.
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Appendix D: Differential Cross sections of γN → πN, ηN,KΛ,KΣ

1. γp → π0p
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FIG. 17: Differential cross sections of γp → π0p. The red solid curves are the current results while

the blue dashed curves are from our previous analysis.
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FIG. 18: The photon asymmetries Σ of γp → π0p. The red solid curves are the current results

while the blue dashed curves are from our previous analysis.
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2. γp → π+n
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FIG. 19: Differential cross sections of γp → π+n. The red solid curves are the current results while

the blue dashed curves are from our previous analysis.
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FIG. 20: The photon asymmetries Σ of γp → π+n. The red solid curves are the current results

while the blue dashed curves are from our previous analysis.
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3. γp → ηp
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FIG. 21: Differential cross sections of γp → ηp. The red solid curves are the current results while

the blue dashed curves are from our previous analysis.
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FIG. 22: Σ and T of γp → ηp. The red solid curves are the current results while the blue dashed

curves are from our previous analysis.
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4. γp → K+Λ
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FIG. 23: Differential cross sections of γp → K+Λ. The red solid curves are the current results

while the blue dashed curves are from our previous analysis.

45



-1

0

1

P

-1

0

1
P

-1

0

1

P

90

θ (deg.)

0 90

θ (deg.)

0 90

θ (deg.)

0 90

θ (deg.)

0 90

θ (deg.)

0 90 180

θ (deg.)

0 90 180

θ (deg.)

-1

0

1

P

1625 MeV 1635 MeV 1645 MeV 1649 MeV 1655 MeV 1660 MeV

1715 MeV1705 MeV1695 MeV1685 MeV1675 MeV

1665 MeV

1725 MeV 1735 MeV

1743 MeV 1848 MeV 1898 MeV

1947 MeV

0

1796 MeV

2086 MeV

2041 MeV1994 MeV

-1

0

1

Σ

-1

0

1

Σ

90

θ (deg.)

0 90

θ (deg.)

0 90

θ (deg.)

0 90

θ (deg.)

0 90 180

θ (deg.)

0 90

θ (deg.)

-1

0

1

Σ

0 90 180

θ (deg.)

1649 MeV 1676 MeV 1702 MeV 1728 MeV 1754 MeV 1781 MeV

1883 MeV1859 MeV1833 MeV

1808 MeV

1906 MeV 1947 MeV

2109 MeV2086 MeV

1994 MeV 2041 MeV

0

-1

0

1

T

90

θ (deg.)

90

θ (deg.)

0 90 180

θ (deg.)

0 90

θ (deg.)

-1

0

1

T

0 90

θ (deg.)

0 90

θ (deg.)

0 90 180

θ (deg.)

1649 MeV 1676 MeV 1702 MeV 1728 MeV 1754 MeV 1781 MeV

1883 MeV1859 MeV1833 MeV

1808 MeV

1906 MeV 00

FIG. 24: Observables P , Σ, T of of γp → K+Λ. The red solid curves are the current results while

the blue dashed curves are from our previous analysis.

46



5. γp → KΣ
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FIG. 25: Differential cross sections of γp → K0Σ+. The red solid curves are the current results

while the blue dashed curves are from our previous analysis.
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FIG. 26: Differential cross sections of γp → K+Σ0. The red solid curves are the current results

while the blue dashed curves are from our previous analysis.

48



Appendix E: Differential Cross sections of γ∗p → πN reactions

1. γ∗p → π0p
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FIG. 27: Differential cross section (σT + ǫσL) for γ
∗p → π0p at Q2 = 0.4(GeV/c)2 .
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FIG. 28: Differential cross section (σT + ǫσL) for γ
∗p → π0p at Q2 = 1.76(GeV/c)2 .
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FIG. 29: Differential cross section (σT + ǫσL) for γ
∗p → π0p at Q2 = 3.00(GeV/c)2 .
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2. γ∗p → π+n

0

10

20
1110 1130 1150 1170 1190

1210

0

10

1230 1250 1270 1290 1310 1330

0

5

10
1350 1370 1390 1410 1430

0 1
cos θπ*

1450

0

5

10

-1 0 1
cos θπ*

1470

0 1
cos θπ*

1490

0 1
cos θπ*

1510

0 1
cos θπ*

1530

0 1
cos θπ*

1550

FIG. 30: Differential cross section (σT + ǫσL) for γ
∗p → π+n at Q2 = 0.4(GeV/c)2 .
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FIG. 31: Differential cross section (σT + ǫσL) for γ
∗p → π+n at Q2 = 1.76(GeV/c)2 .
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FIG. 32: Differential cross section (σT + ǫσL) for γ
∗p → π+n at Q2 = 2.91(GeV/c)2 .
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Appendix F: Inclusive cross section of p(e, e′)
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FIG. 33: Differential cross sections of p(e, e′)X at Q2 ∼ 0.3, 1.1, 2.3(GeV/c)2 . Dashed curves are

from the contributions of p(e, e′π)N .
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